Differential dynamics of platelet contact and spreading.
نویسندگان
چکیده
Platelet spreading is critical for hemostatic plug formation and thrombosis. However, the detailed dynamics of platelet spreading as a function of receptor-ligand adhesive interactions has not been thoroughly investigated. Using reflection interference contrast microscopy, we found that both adhesive interactions and PAR4 activation affect the dynamics of platelet membrane contact formation during spreading. The initial growth of close contact area during spreading was controlled by the combination of different immobilized ligands or PAR4 activation on fibrinogen, whereas the growth of the total area of spreading was independent of adhesion type and PAR4 signaling. We found that filopodia extend to their maximal length and then contract over time; and that filopodial protrusion and expansion were affected by PAR4 signaling. Upon PAR4 activation, the integrin α(IIb)β(3) mediated close contact to fibrinogen substrata and led to the formation of ringlike patterns in the platelet contact zone. A systematic study of platelet spreading of GPVI-, α(2)-, or β(3)-deficient platelets on collagen or fibrinogen suggests the integrin α(2) is indispensable for spreading on collagen. The platelet collagen receptors GPVI and α(2) regulate integrin α(IIb)β(3)-mediated platelet spreading on fibrinogen. This work elucidates quantitatively how receptor-ligand adhesion and biochemical signals synergistically control platelet spreading.
منابع مشابه
Simulation of nanodroplet impact on a solid surface
A novel computational fluid dynamics and molecular kinetic theory (CFD-MK) method was developed to simulate the impingement of a nanodroplet onto a solid surface. A numerical solution of the Navier–Stokes equation using a volume-of-fluid (VOF) technique was used to model nanodroplet deformation. Dynamic contact angle during droplet impact was obtained by molecular kinetic theory. This dynamic c...
متن کاملSimulation of nanodroplet impact on a solid surface
A novel computational fluid dynamics and molecular kinetic theory (CFD-MK) method was developed to simulate the impingement of a nanodroplet onto a solid surface. A numerical solution of the Navier–Stokes equation using a volume-of-fluid (VOF) technique was used to model nanodroplet deformation. Dynamic contact angle during droplet impact was obtained by molecular kinetic theory. This dynamic c...
متن کاملContact lines over random topographical substrates . Part 2 . Dynamics
We examine the dynamics of a two-dimensional droplet spreading over a random topographical substrate. Our analysis is based on the formalism developed in Part 1 of this study, where a random substrate was modelled as band-limited white noise. The system of integrodifferential equations for the motion of the contact points over deterministic substrates derived by Savva and Kalliadasis (Phys. Flu...
متن کاملA Model for a Spreading and Melting Droplet on a Heated Substrate
We develop a model to describe the dynamics of a spreading and melting droplet on a heated substrate. The model, developed in the capillary-dominated limit, is geometrical in nature and couples the contact line, trijunction, and phase-change dynamics. The competition between spreading and melting is characterized by a single parameter KT that represents the ratio of the characteristic contact l...
متن کاملDroplet spreading on chemically heterogeneous substrates.
Consider the spreading dynamics of a two-dimensional droplet over chemically heterogeneous substrates. Assuming small slopes and strong surface tension effects, a long-wave expansion of the Stokes equations yields a single evolution equation for the droplet thickness. The contact line singularity is removed by assuming slip at the liquid-solid interface. The chemical nature of the substrate is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 102 3 شماره
صفحات -
تاریخ انتشار 2012